
30 Informatica Economică vol. 14, no. 4/2010

Improving Software Performance in the
Compute Unified Device Architecture

Alexandru PIRJAN

Romanian-American University, Bucharest, Romania
alex@pirjan.com

This paper analyzes several aspects regarding the improvement of software performance for
applications written in the Compute Unified Device Architecture (CUDA). We address an
issue of great importance when programming a CUDA application: the Graphics Processing
Unit’s (GPU’s) memory management through transpose kernels. We also benchmark and
evaluate the performance for progressively optimizing a transposing matrix application in
CUDA. One particular interest was to research how well the optimization techniques, applied
to software application written in CUDA, scale to the latest generation of general-purpose
graphic processors units (GPGPU), like the Fermi architecture implemented in the GTX480
and the previous architecture implemented in GTX280. Lately, there has been a lot of interest
in the literature for this type of optimization analysis, but none of the works so far (to our best
knowledge) tried to validate if the optimizations can apply to a GPU from the latest Fermi
architecture and how well does the Fermi architecture scale to these software performance
improving techniques.
Keywords: Compute Unified Device Architecture, Fermi Architecture, Naïve Transpose,
Coalesced Transpose, Shared Memory Copy, Loop in Kernel, Loop over Kernel

Introduction
Many software developers have focused

their attention lately on General Purpose
Computation Graphics Processing Units
(GPGPU) as the latest generations of GPU
(Graphics Processing Units) architectures are
much easier to program than traditional
GPUs and offer a significant increase in both
memory bandwidth and computational
power. A GPGPU has a processing power far
beyond than that of a CPU (Central
Processing Unit), which is particularly useful
in many scientific fields (data extraction,
financial data prediction, telecommunication
control, neuroscience, medical data analysis).
The necessary time for data extraction is
considerably reduced as graphics processing
units combine hundreds of simplified parallel
processing cores, which can be very useful
when performing operations on massive data
workloads.
Numerous scientific fields like image
processing, geometric processing and
database can benefit from this high
computational power that overcomes the
most powerful CPUs. The performance per
watt consumed represents another essential

aspect when comparing a GPGPU to a
classical central processing unit. Taking into
account the high performance, low cost and
the increasing number of features offered,
general-purpose computation graphics
processing units prove to be powerful
instruments capable of solving an
increasingly wide range of applications.
The PeakStream Application Platform [1]
from PeakStream executed successfully
Monte Carlo simulations for pricing financial
instruments. When compared to dual 3.6GHz
Xeon processors, the GPU implementation
provided a 16X speedup. Scientists from the
University of North Carolina at Chapel Hill
[2] have developed algorithms for
performing fast computation of several
common database operations on GPU’s
(conjunctive selections, aggregations, and
semi-linear query). For certain query types,
the performance gain was huge.
In this paper, the research is focused on
features and generalized optimization
methods, on establishing principles and
strategies for improving software
performance when using the Compute
Unified Device Architecture implemented in

1

Informatica Economică vol. 14, no. 4/2010 31

the latest generation of graphics processing
units (GPU) (like the Fermi architecture). In
order to achieve a significant degree of
performance and benefit from the Fermi’s
architecture full potential, massive
multithreading must be employed to
optimally manage the large number of cores
and global memory latency.

2 Related Work
In this section, we briefly review previous
work on similar software performance
optimizing techniques that are of particular
interest for our research.
In [3], authors discuss the GeForce 8800
GTX processor's architecture, features, and
generalized optimization strategies. On this
platform, the optimization could be achieved
by using massive multithreading, taking into
account at every step the right balance
between each thread's resource usage and the
number of simultaneously active threads. The
resources to manage include the number of
registers and the amount of on-chip memory
used per thread, number of threads per
multiprocessor and global memory
bandwidth. An increase in performance is
obtained by reordering accesses to off-chip
memory in order to combine requests to the
same or contiguous memory locations and it
is applied the classical optimizations to
reduce the number of executed operations.
All these strategies were applied across a
variety of applications and domains and
achieve between a 10.5X to 457X speedup in
kernel. The above-mentioned GPU is capable
of impressive performance on a set of
disparate non-graphics applications. The
paper presents general principles for
optimizing applications for this type of
architecture, namely having efficient code,
utilizing many threads to hide latency and
using local memories to alleviate pressure on
global memory bandwidth.
In [4] it is described a high-performance
parallel radix sort and merge sort routines for
many core GPUs, taking advantage of the
full programmability offered by CUDA. In
order to optimize software performance,
authors have carefully designed algorithms

that expose substantial fine-grained
parallelism and decompose the computation
into independent tasks that perform minimal
global communication. The optimization
techniques made use of the high-speed on-
chip shared memory provided by NVIDIA’s
GPU architecture and efficient data-parallel
primitives, particularly parallel scan. They
measured the performance on a range of
NVIDIA GeForce GPUs: the GTX 280, 9800
GTX, 8800 Ultra, 8800 GT and 8600 GTS.
Measurements demonstrate that
progressively more parallel devices achieve
progressively faster running times.
In [5] we are presented some techiques of
optimization for algorithms used in temporal
data mining based on the MapReduce
programming model. The benchmark has
been run on systems using three NVIDIA
graphic cards: GeForce 8800, GeForce 9800
GX2 and GeForce GTX 280. In the first
technique, the data is stored in texture
memory and a strict thread-level parallelism
is employed to assign one thread to search
for a frequent episode. The second technique
uses shared memory to buffer the data prior
to searching for a unique episode.
Benchmark results highlight the fact that a
high-performance implementation on the
GPGPU should factor in the problem size,
the type of GPU, the type of algorithm and
the data-access method when determining the
type and level of parallelism. To guide the
GPGPU programmer towards optimal
performance within such a broad design
space, authors provide some general
performance characterizations of the data-
mining application.
Recently, N. Nakasato [6] has presented
benchmark results of optimized dense matrix
multiplication kernels for a Cypress GPU
(which belongs to AMD's Evergreen family
of products). In this paper there are proposed
general matrix multiply kernels for single,
double and double-double precision. The
proposed kernels show 73% and 87% of the
theoretical performance of the GPU,
respectively. The benchmark leads to some
interesting results, including the conclusion
that texture cache is very effective on the

32 Informatica Economică vol. 14, no. 4/2010

Cypress architecture.

3 The Compute Unified Device
Architecture (CUDA)
Graphics Processing Units have been used
for a long time solely to accelerate graphics
rendering on computers. In order to satisfy
the increasing need for improved
three-dimensional rendering at a high
resolution and a large number of frames per
second, the GPU has evolved from a one-

purpose specialized architecture to multiple
purposes complex architectures, able to do
much more than just provide video rendering.
The acceleration of a broad class of
applications became possible once with the
introduction of the NVIDIA Compute
Unified Device Architecture. The
architecture and the main characteristics of
the NVIDIA GPUs are summarized in Figure
1.

Fig. 1. NVIDIA Compute Unified Device Architecture (CUDA)[7].

CUDA is a software and hardware
architecture that enables the NVIDIA
graphics processor to execute programs
written in C, C++, FORTRAN, OpenCL,
Direct Compute and other languages. A
CUDA program invokes more parallel
program kernels. The kernel processes in
parallel each set of parallel threads. The
programmer or compiler manages these
threads by grouping them into thread blocks
(consisting of more threads) and grids of
thread blocks (consisting of more thread
blocks).
The GPU processor instantiates a kernel
program on a grid containing parallel thread
blocks. Each thread from the block executes
an instance of the kernel and has an unique
ID associated to registers, to thread’s private
memory within the thread block [7].
The Compute Unified Device Architecture
hierarchy of threads is mapped to the
hierarchy of the graphics processing units’
hardware processor; a GPU executes one or

more kernel grids; a streaming
multiprocessor (SM) executes one or more
thread blocks; the CUDA cores contained in
the streaming multiprocessor SM run the
threads within blocks. A streaming
multiprocessor SM can process up to 32
groups of threads called warps. Regarding
memory hierarchy, each multiprocessor
contains a set of 32-bit registry with a zone
of shared memory, which is easily accessible
for each core of the multiprocessor but
hidden from other multi-processors.
Depending on the generation of a GPU, the
number of registry and the size of shared
memory vary. Besides shared memory, a
multiprocessor contains two read - only
memory caches, one for texture and another
one for constants.
In order to improve software performance
when programming in CUDA, developers
have to optimize the number of concomitant
active threads and balance each thread’s
resources: number of registers and threads

Informatica Economică vol. 14, no. 4/2010 33

per multiprocessor, global memory
bandwidth and the amount of on-chip
memory assigned per thread. Performance
increases have been obtained by reordering
accesses to off-chip memory in order to
manage requests referring to the same
memory locations (or contiguous memory
locations). By applying these techniques,
many applications improved their execution
time up to 457X in kernel codes and 431X at
a general level [3].
In the NVIDIA CUDA programming model
[7] a system is comprised of a traditional
CPU (representing the host) and one or more
massively data-parallel coprocessors
(representing the devices). The CUDA
runtime has library functions for managing
both the device memory and transfers from
the host to the compute devices.
All concurrent threads are based on the same
code even if they may follow different paths
of execution because each CUDA device
processor supports the Single-Program
Multiple Data (SPMD) model [8] and each
thread resides in the same global address
space. Data parallel functions, called kernels
and data structures, corresponding to the
compute devices, comply with standard
ANSI C extended with keywords. A kernel is
usually invoked on thousands of threads and
describes the work of a single one. Inside
thread blocks, through built-in primitives,
threads synchronize their actions and share
their data. The CUDA programming model
enables a program’s components, which are
suited for data parallelism, to be separated
and executed on a specialized massive data

parallelism coprocessor. A detailed overview
on the CUDA programming model is
depicted in [7].
The G80 on the GeForce 8800 is NVIDIA’s
first GPU that implements CUDA and has 16
streaming multiprocessors, each of them
having 16 KB shared memory and eight
streaming processors (SPs) resulting in a
total of 128 SPs [7]. Later on, the GT200
architecture implemented in the GeForce
GTX200 series succeeded the G80. The
amount of streaming multiprocessors is 30
resulting in a total of 240 SPs. The
architecture also offered double precision
floating-point capability. The newest
NVIDIA’s architecture is called Fermi and
became commercially available on March 26,
2010. This architecture is implemented in the
GeForce GTX400 series and it features 16
SMs, each of them having 32 SPs (in the
Fermi architecture the streaming processors
are called CUDA cores) and 64 KB shared
memory which is configurable as larger
shared memory or larger L1 cache (48/16 KB
or 16/48 KB). The total amount of SPs is 512
and the whole GPU shares a L2 cache of 768
KB. Fermi offers eight times faster double
precision performance, IEEE 754-2008 FP
precision and error correcting code (ECC)
memory, especially required for consistency
requirements of scientific computing [7]. A
comparison between the three architectures is
depicted in Table 1. This architecture offers a
high degree of flexibility when it comes
about allocating local resources like registers
or local memory in threads.

Table 1. Comparison of the three major CUDA GPU architecture specifications

(Note that the numbers of streaming processors are maximum values).
Architecture’s Codename G80 GT200 Fermi

Release Year 2006 2008 2010
Fabrication Process 90 nm 65 nm 40 nm

Number of Transistors 681 million 1.4 billion 3.0 billion
Streaming Multiprocessors (SM) 16 30 16
Streaming Processors (per SM) 8 8 32

Streaming Processors (total) 128 240 512
Single Precision FP Capability 128 MAD ops/clock 240 MAD ops/clock 512 FMA ops/clock
Double Precision FP Capability None 30 FMA ops/clock 256 FMA ops/clock

Shared Memory (per SM) 16 KB 16 KB Configurable 48 KB or 16 KB
L1 Cache (per SM) None None Configurable 16 KB or 48 KB

L2 Cache None None 768 KB

34 Informatica Economică vol. 14, no. 4/2010

The programmer divides local resources
among threads and every CUDA core can
process a variable number of threads.
Although this flexibility offers a high degree
of control over an application performance, it
also has a great impact on optimizing the
performance of applications. Another
important aspect is related to how the
GeForce GTX480 can execute applications
and what are the elements that improve or
limit its performance. Numerous software
applications were ported and evaluated on
the CUDA platform as a result of its huge
data processing power [9].
According to a study from Stanford
University [10], when one chooses to execute
code on the CUDA platform, he must follow
some major guidelines in order to improve
the software performance:
 understand how software maps to

architecture,
 use heterogeneous CPU+GPU computing,
 use massive amounts of parallelism,
 understand SIMT (Single Instruction

Multiple Thread) instruction execution,
 enable global memory coalescing,
 understand cache behaviour,
 use shared memory,
 optimize memory copies,
 understand PTX (a low-level parallel

thread execution virtual machine)
instructions.

In order to improve the software performance
the following technical issues must be taken
into consideration:
 To assure a reduced bandwidth usage and

to minimize the redundant execution, a
programmer must optimize the use of the
on-chip memory. This memory is called
shared memory, is software managed and
along with a register file it represents the
working memory within a group of cores.
The shared memory has low latency and is
partitioned among all the thread blocks
that belong to the same streaming
multiprocessor during the runtime. The
inter-thread data can be reused because all
data in the shared memory is shared
among threads from the same thread

block. Even if there is a small increase in
the registers or shared memory usage per
thread, the number of simultaneous
executed threads diminishes greatly.

 Using synchronization each thread can
communicate only with other threads
within the same thread block and there is
no communication within threads from
other blocks. Therefore, hardware
resources do not have to be virtualized
and so the hardware becomes highly
scalable. The same program written in
CUDA can be executed successfully on
different generations of GPUs (for
example one can use a GTX480 as well as
a GTX280) but a single kernel call has a
limited parallelism that can be applied.

 Every GPU thread has its own private per
thread memory, private registers, program
counter and thread execution state. Each
thread can execute an independent code
path. The GPU processor executes and
manages at hardware level hundreds of
concurrent threads avoiding scheduling
overhead and hiding memory latency. The
Fermi architecture offers 512 execution
cores; a GTX480 has 480 execution cores
available for use. Hundreds of threads are
needed for all these cores to be completely
occupied. The high latency of global
memory is also an important technical
issue that must be taken into consideration
when a programmer defines the threads in
order to improve the software
performance in CUDA. While CPU
designs use large caches to hide memory
latencies, CUDA generates and uses
thousands of active threads. In contrast to
traditional multicore systems,
programmers may have to define threads
at a finer granularity in order to assure that
there is a sufficient number of threads and
see that there is a high compute-to-
memory-access ratio in order to avoid
saturation of memory channels.

Informatica Economică vol. 14, no. 4/2010 35

4 Optimizing Performance for Programs
Written in the CUDA Programming
Model
When algorithms are developed in the
CUDA programming model, the basic
concern of developers is to divide the work
required in fragments that can be processed
by a x number of thread blocks, each
containing n threads. For optimum
performance, it is recommended that the
number of thread blocks match the number of
processors, although the threads within a
block will be executed by more cores within
a streaming multiprocessor. The most
important factor in achieving performance
consists in repartitioning the tasks to be
performed between the x thread blocks.
A single thread block can be considered as
equivalent to a PRAM model (parallel
random-access-machine) which allows
processors to behave arbitrarily
asynchronous CRCW (concurrent-read,
concurrent-write) [11].
Thus, PRAM algorithms are most efficient at
block level [4] and they have to be
decomposed into separate kernels because of
the need for global synchronization of data
flows, synchronization that can be achieved
only by successive calls of the kernel.
When optimizing an application for the
Fermi architecture we have to consider the
floating point throughput of an application
and the fact that the Fermi architecture now
supports by default subnormal numbers at the
hardware level and also all four IEEE 754-
2008 rounding modes (nearest, zero, positive
infinity, and negative infinity) [7].

Subnormal numbers consist of small numbers
between zero and the smallest normalized
number of a given floating point number
system. The GPUs generations prior to Fermi
incurred a loss of accuracy by flushing
subnormal operands and results to zero.
Subnormal numbers are handled at hardware
level, allowing values to gradually underflow
to zero without a performance penalty unlike
the CPUs that perform subnormal
calculations in exception-handling software,
which consumes thousands of cycles.
In computer graphics, linear algebra and
scientific application one often needs to
multiply two numbers and add the product to
a third number (E.g. D = A × B + C). In prior
generations of GPUs the multiply-add
(MAD) instruction was used and both
operations were performed in a single clock
by performing a multiplication with
truncation, followed by an addition with
round-to-nearest even. Nvidia implemented
the new fused multiply-add (FMA)
instruction in the Fermi architecture for both
32-bit single-precision and 64-bit double-
precision floating-point numbers (The
GT200 supports FMA only in double
precision). The fused multiply-add
instruction brings several improvements
when compared to multiply-add by
withholding full precision in the intermediate
stage (Figure 2). A significant number of
algorithms (used in iterative mathematical
calculations, rendering fine intersecting
geometry) benefit from the increased
precision.

Fig. 2. Differences between the fused multiply-add and the new fused multiply-add

The Fermi architecture offers a Single
Precision Floating Point Capability of 512
FMA ops /clock and a Double Precision

Floating Point Capability of 256 FMA ops
/clock. In order for this performance to be
reached, the CUDA streaming processors

36 Informatica Economică vol. 14, no. 4/2010

must be fully loaded and for this to happen
an application must have many threads with
few synchronizations without consuming the
global memory bandwidth. The kernel speeds
up if the number of instructions that do not
contribute to data computation is reduced
[12].
In order for an application to reach maximum
performance, the developers must properly
manage global memory latency by creating
enough threads to fully load the streaming
processors while other threads are pending
on global memory accesses. The threads in
the CUDA programming model must have a
finer granularity than those used for
traditional multicore execution. The number
of global accesses and long-latency
operations in an application determines the
necessary number of threads. The available
shared memory and registers’ size may
restrict the number of active threads and
generate memory latency.
According to the official documentation
"Official CUDA Programming Guide" [7]
the limitation of memory can be overcome in
two ways. A possible option is the memory
paging technique that successively moves
portions of memory and then processes them.
The developer can use also the CUDA direct
access memory option, “zero-copy” but the
bandwidth available for this technique is very
low and the memory should be declared as
“pinned” thus allowing the memory pages to
be maintained in real memory all the time.
This method is less effective than the paging
one as both the GPU and the operating
system have limits concerning the pinned
memory that is under 4 GB.
The Fermi architecture overcomes all the
above-mentioned limitations and significant
efforts are made to develop a CUDA
programming environment to provide the
necessary facilities for the typical
programmer. A Fermi GPU can execute and
run genuine C++ code as a result of a unified
memory hierarchy address space. A
programmer can access dynamic arrays in
registry memory resulting in enhancements
that allow improved execution times for
complex algorithms.

Although the GPU has six 64-bit memory
partitions, for a 384-bit memory interface,
supporting up to a total of 6 GB of GDDR5
DRAM, the memory is a significant
limitation of the hardware and is still
insufficient considering that in practice many
databases’ sizes are of the order of terabytes
or even petabytes.
The global memory bandwidth influences
and limits the throughput of the system. In
this case, the developers cannot improve
performance by increasing the number of
threads. The number of simultaneously
executed threads is limited by the necessity
of reusing data and therefore, it imposes the
use of additional registers and shared
memory. The usage of these resources is very
difficult to balance, often is non-intuitive and
some applications will run within the limits
of resources which are different from those
specified by this architecture.

5 Experimental Results
In this section, we analyze the main aspects
of CUDA application performance and GPU
memory management through a sequence of
progressively optimized kernels as applied to
a matrix transpose. In the beginning there are
depicted some matrix transpose
characteristics, then a few issues regarding
the code-behind, performance measurements
and a sequence of copy and transpose kernels
that progressively address various
performance bottlenecks. We address three
aspects concerning memory usage:
coalescing data transfers to and from global
memory, shared memory bank conflicts,
partition camping. Shared memory bank
conflicts are related to on-chip shared
memory (presented in Section 2 of this
paper) while coalescing and partition
camping relates with data transfers between
global device and on-chip memories. The
analyzed issues address basic CUDA
programming concepts: kernels, threads,
blocks of threads, different memory spaces
accessible by CUDA threads. A detailed
overview for these concepts is presented in
[7].
For the transpose optimization we choose a

Informatica Economică vol. 14, no. 4/2010 37

matrix of floats so that the input and output
matrices address different memory locations
as recommended by Greg Ruetsch and
Paulius Micikevicius in [13]. The
Whitepaper recommends using square
matrices having a multiple of 32 dimension.
If one decides to change these dimensions
and choose some arbitrary size matrices, he
must make some slight modifications in the
source code.
The main analyzed tasks consist in launching
and timing of several kernels, data allocation
and transfer between the host and the device,
validating of the results and freeing host and
device memory. For benchmarking purposes,
we also run kernels that execute matrix
copies, not only matrix transposes. The
effective bandwidth is calculated in GB/s for
the matrix copy and the transposed one using
a NVIDIA GTX480 and a GTX280. The
calculated bandwidth is chosen as twice the
size of the matrix (corresponding to the
operations of reading and writing the matrix)
divided by the time of execution as proposed
in [13]. In the benchmarking, the following
configuration has been used: Intel Core2
Quad Q9550 at 2.8 GHz with 4 GB (2x2GB)
of 1333 MHz DDR3 SDRAM. Programming
and access to the GPUs used the CUDA
toolkit 3.2. RC with NVIDIA driver version
260.93. In addition, all processes related to
graphical user interface have been disabled to
reduce the external traffic to the GPU.
At the top of the code in the
“TranspunereMatrice.cu” file we define the
variable “NUMAR_REPETITII” that
specifies the number of loops that normalize
the effective bandwidth. The looping is
executed a “NUMAR_REPETITII” times
over the code and the measurement is
calculated when looping takes place over
kernel and within the kernel as shown below:

// masuram lansarea la nivelul kernel
cutilSafeCall(cudaEventRecord(inceput,
0));
for (int i=0; i < NUMAR_REPETITII; i++)
{
 kernel<<<grid,
threads>>>(device_odata, device_idata,
dimensiune_x, dimensiune_y, 1);
}
cutilSafeCall(cudaEventRecord(sfarsit,

0));
cutilSafeCall(
cudaEventSynchronize(sfarsit));
 float TimpKernelExtern;
cutilSafeCall(
cudaEventElapsedTime(&TimpKernelExtern,
inceput, sfarsit));
cutilSafeCall(cudaMemcpy(host_odata,
device_odata, dimensiune_mem,
cudaMemcpyDeviceToHost));
 CUTBoolean rezultat =
cutComparef(trans, host_odata,
dimensiune_x*dimensiune_y);
if (rezultat == CUTFalse) {
 shrLog(" %s eroare Kernel \n",
DenumireKernel);
 reusita = CUTFalse;
}

// masuram inauntrul kernel-ului
cutilSafeCall(cudaEventRecord(inceput,
0));
 kernel<<<grid,
threads>>>(device_odata, device_idata,
dimensiune_x, dimensiune_y,
NUMAR_REPETITII);
 cutilSafeCall(
cudaEventRecord(sfarsit, 0));
cutilSafeCall(
cudaEventSynchronize(sfarsit));
 float TimpKernelIntern;
cutilSafeCall(
cudaEventElapsedTime(&TimpKernelIntern,
inceput, sfarsit));
cutilSafeCall(cudaMemcpy(host_odata,
device_odata, dimensiune_mem,
cudaMemcpyDeviceToHost));
rezultat = cutComparef(trans,
host_odata, dimensiune_x*dimensiune_y);
if (rezultat == CUTFalse) {
 shrLog(" %s eroare Kernel \n",
DenumireKernel);
 reusita = CUTFalse;
}

The timing is achieved through the “for” loop
and by passing the variable
“NUMAR_REPETITII” to the kernel:

for (int i=0; i < NUMAR_REPETITII; i++)
{
 kernel<<<grid,
threads>>>(device_odata, device_idata,
dimensiune_x, dimensiune_y, 1);
 }
………………………

 kernel<<<grid, threads>>>(device_odata,
device_idata, dimensiune_x,
dimensiune_y, NUMAR_REPETITII);

The two timings presented above differ in the
overhead of the kernel launch and must be
consistent between different kernels and
when calculating the matrix’s indices when

38 Informatica Economică vol. 14, no. 4/2010

the kernel launches.
The looping over kernel acts as a
synchronization mechanism because when
the kernel is launched multiple times from a
loop, all the blocks from inside one kernel
launch must have executed completely before
another launch can occur. Once every loop,
the set of active blocks and memory access
patterns reset and thus resources synchronize.
When the loop takes place within the kernels
it is more likely for the set of active thread
blocks to diverge during the timing loop. The
two timing code methods represent a useful
tool for measuring the overall performance
and the data movement times between
kernels.
We benchmark the copy and transpose
operations on a GTX480 and a GTX280 in
order to analyze the optimization methods

regarding coalesced global memory accesses
and shared memory bank conflicts.
The testing methodology follows the
guidelines from NVIDIA [13] and
benchmarks the following operations: Simple
Copy, Shared Memory Copy, Naïve
Transpose, Coalesced Transpose, Bank
Conflict Free Transpose, Fine-grained
Transpose, Coarse-grained Transpose and
Diagonal. The performance of copy and
transpose kernels obtained on a 1024x1024
square matrix (composed from 64x64 tiles,
each tile having 16x16 size) using a GeForce
GTX280 and a GeForce GTX480 are
recorded after 10 consecutive runs for each
device regarding kernel over and kernel in.
a) Simple copy test. Results are presented in
Table 2 and Figure 3.

Table 2. Bandwidth in the simple copy test.

 Loop over kernel (GB/s) Loop in kernel (GB/s)

Test number GTX280 GTX480 GTX280 GTX480

1 72.1 110.76 105.87 358.43

2 91.67 114.95 106.08 352.7

3 91.64 118.69 106.03 358.38

4 67.85 118.85 105.91 355.49

5 91.61 106.68 105.86 353.92

6 72.21 118.73 106.07 356.63

7 72.11 118.76 106.32 356.27

8 70.84 107.77 105.95 348.68

9 91.66 118.71 105.86 352.44

10 72.06 118.65 105.89 348.93

Comparing the obtained results in this case,
one can observe that in both situations (loop
over kernel and loop in kernel) the bandwidth
throughput is higher when using the
GTX480. Differences are notable in the loop
in kernel test, the bandwidth being up to 3
times higher for GTX480 than for GTX280.

In the loop over kernel test differences
between the two graphic cards are on average
45% higher for the GTX480 than for the
GTX280. These differences are justifiable if
we take into account the improvements of
Fermi architecture.

Informatica Economică vol. 14, no. 4/2010 39

Fig. 3. Simple copy test – graphical results.

b) The naïve transpose test. Results are presented in Table 3 and Fig. 4.

Table 3. Bandwidth in the naïve transpose test.

Loop over kernel

(GB/s)
Loop in kernel (GB/s)

Test number GTX280 GTX480 GTX280 GTX480

1 2.42 60.6 2.48 92.09

2 2.43 60.72 2.48 92.55

3 2.43 57.9 2.48 92.54

4 2.42 55.38 2.48 92.45

5 2.42 55.41 2.46 92.37

6 2.42 60.65 2.48 92.44

7 2.43 60.6 2.47 92.42

8 2.42 57.06 2.47 92.42

9 2.43 57.02 2.48 92.13

10 2.42 60.55 2.48 92.47

Fig. 4. Naïve transpose test – graphical results.

Comparing the obtained results in the naïve
transpose case, one can observe that in both
situations (loop over kernel and loop in
kernel) the bandwidth throughput is
tremendously higher when using the
GTX480. The GTX480 has a L1 cache that
helps caching temporary register spills of
complex programs. The GPUs generations
prior to Fermi used registers directly to
DRAM and this increased latency. The L1
cache scales the performance tremendously.

The GTX480 also features a 768 KB unified
L2 cache that provides efficient high speed
data sharing across the GPU. Algorithms
such as sparse matrix multiplication, physics
solvers and raytracing benefit greatly from
the cache hierarchy. Differences of
performance between the simple copy and
the naïve transpose tests can be alleviated
through the global memory coalescing
optimization technique.
c) Coalesced Transpose. Results are

40 Informatica Economică vol. 14, no. 4/2010

presented in Table 4 and Figure 5.
GTX480 offers a significant increased
performance in the coalesced transpose test,
in both situations (loop over kernel and loop
in kernel) over the GTX280. In both
mentioned above situations the bandwidth

throughput is higher in the coalesced
transpose test than in the case of the naïve
transpose test, but these results are much
lower than those obtained in the simple copy
test.

Table 4. Bandwidth in the coalesced transpose test.
 Loop over kernel (GB/s) Loop in kernel (GB/s)

Test number GTX280 GTX480 GTX280 GTX480

1 17.7 91.96 19.37 167.74

2 18.29 91.7 19.41 167.69

3 18.31 81.53 19.35 167.49

4 17.81 91.76 19.35 167.4

5 17.29 91.68 19.36 167.31

6 17.56 91.86 19.33 167.89

7 18.05 91.85 19.33 167.81

8 17.8 91.86 19.37 167.86

9 17.28 91.9 19.4 167.81

10 18.02 91.69 19.36 167.27

Fig. 5. Coalesced transpose test – graphical results.

A synchronization barrier required in the
coalesced transpose explains this
performance gap.
d) Shared memory copy. Results are
presented in Table 5 and Figure 6.
When comparing results obtained in this test
by the GTX280 and the GTX480 one can
notice that the second device offers better
performance. In this test the copy kernel

utilizes shared memory. Threads do not share
data during the execution phase and the
purpose of this test is to assess the cost of the
synchronization barrier (mentioned in the
coalesced transpose case). The use of shared
memory with a synchronization barrier has
little effect on the performance as suggested
by the results obtained.

Informatica Economică vol. 14, no. 4/2010 41

Table 5. Bandwidth in the shared memory copy test.
 Loop over kernel (GB/s) Loop in kernel (GB/s)

Test number GTX280 GTX480 GTX280 GTX480

1 38.65 96.71 87.8 192.82

2 39.99 96.85 87.78 193.25

3 39.98 96.67 87.69 193.27

4 36.75 96.69 87.82 193.17

5 34.32 96.77 87.79 193.29

6 36.66 96.82 87.96 192.98

7 38.03 96.69 87.94 192.81

8 37.09 86.8 88.03 193.07

9 36.56 81.36 88 193.65

10 38.31 96.64 88.09 192.76

Fig. 6. Shared memory copy test – graphical results.

When comparing the simple copy and shared
memory copy for the GTX280 the “Loop in
kernel” column indicates closed values for

the measured bandwidth.
e) Shared memory bank conflicts. Results
are presented in Table 6 and Figure 7.

Table 6. Bandwidth in the shared memory bank conflicts test.

 Loop over kernel (GB/s) Loop in kernel (GB/s)

Test number GTX280 GTX480 GTX280 GTX480

1 18.38 102.57 19.39 241.21

2 18.6 102.5 19.38 240.16

3 18.61 102.56 19.37 240.13

4 18.33 102.62 19.41 241.29

5 18.07 95.21 19.36 237.26

6 18.32 102.53 19.35 240.16

7 18.37 90.96 19.37 239.69

8 18.38 102.42 19.37 241.54

9 18.36 102.4 19.41 239.51

10 18.36 102.4 19.31 241.61

The results recorded on the Fermi
architecture, the GTX480, are many times
higher than the results recorded on the
previous architecture, the GT200. The
significant difference between the

performances of these two architectures is
explainable if we analyze the way shared
memory bank conflicts occur and how the
Fermi architecture manages the parallel
threads.

42 Informatica Economică vol. 14, no. 4/2010

Fig. 7. Shared memory bank conflicts test – graphical results.

CUDA shared memory is divided into more
memory banks (equally sized memory
modules). Consecutive array accesses
through consecutive threads are very fast as
each memory bank holds a successive 32-bit
value (e.g. a float variable). Multiple data
requests from the same bank generate bank
conflicts. The requests can originate from the
same address or multiple addresses may map
to the same bank. The hardware serializes the
memory operations when the conflict occurs
and this force all the threads to wait until all
memory requests are fulfilled. Serialization
is avoided if all threads read from the same-
shared memory address, because a broadcast
mechanism is automatically triggered. The
broadcast mechanism is an excellent high-
performance method to deliver data
simultaneously to many threads.
When improving the performance of a
CUDA application a developer must
differentiate between local multiprocessor
memory types’ characteristics. The
“registers” are the fastest memory on the
multi-processor. Registers are accessible by
the thread and exist only during its execution.
Shared memory is as fast as a register if no
bank conflicts occur or when the same
memory address is accessed. Unlike
registers, shared memory is accessible by any
thread within the block where it has been
created and exists as long as the block exists.
Global memory exists during the application,
is accessible from the device and is
approximately 150x slower than register or

shared memory. Local memory resides in
global memory, is accessible only by the
thread and exists only during the lifetime of a
thread.
When profiling CUDA applications a
programmer can determine if shared memory
bank conflict occurs in any of the kernels by
using the warp serialize flag. In the Fermi
architecture the streaming multiprocessor
schedules threads in groups of 32 parallel
threads called warps. Two warp schedulers
and two instruction dispatch units make it
possible for two warps to be created and
executed in the same time. The dual warp
scheduler takes two warps and dispatches
one instruction from each of them to a group
consisting of 16 cores, 16 load/store units or
4 Special Function Units. The Fermi’s
scheduler does not have to check for
dependencies inside the instruction stream as
warps execute independently from one
another. Most of the instructions can be dual
issued (two floating instructions, two integer
instructions or a mix of integer, floating point
etc) [7].
f) Decomposing Transpose. In the next
section, we break the transpose into
components to determine the cause for the
significant difference of performance
between the coalesced and shared memory
bank conflict free transpose and the shared
memory copy. Results are presented in Table
7 and Figure 8 for the fine-grained transpose
test and Table 8 and Figure 9 for the coarse-
grained transpose test.

Informatica Economică vol. 14, no. 4/2010 43

Table 7. Bandwidth in the fine-grained transpose test.

 Loop over kernel (GB/s) Loop in kernel (GB/s)
Test

number
GTX280 GTX480 GTX280 GTX480

1 60.32 105.11 92.11 242

2 63.64 92.4 91.13 241.47

3 70.28 104.76 90.56 239.8

4 60.33 104.97 89.61 239.86

5 60.24 105.03 90.64 240.46

6 60.35 105.04 91.44 239.47

7 70.23 104.77 91.6 240.82

8 60.33 104.71 91 238.18

9 60.37 104.7 92.07 240.63

10 60.36 105.01 91.24 239.66

Fig. 8. Fine-grained transpose test – graphical results.

Table 8. Bandwidth in the coarse-grained transpose test.
 Loop over kernel (GB/s) Loop in kernel (GB/s)

Test
number

GTX280 GTX480 GTX280 GTX480

1 18.41 103.97 19.42 239.6

2 19.26 103.99 19.33 239.26

3 18.63 104.12 19.36 237.46

4 18.36 103.97 19.37 241.39

5 18.37 104 19.41 240.98

6 18.41 104.03 19.37 241.39

7 18.41 96.07 19.36 238.98

8 18.42 90.87 19.35 231.84

9 18.4 100.92 19.38 230.45

10 18.41 100.5 19.34 240.19

44 Informatica Economică vol. 14, no. 4/2010

Fig. 9. Coarse-grained transpose test – graphical results.

The coarse-grained transpose kernel does not
transpose the data within the tile, it only
writes the tile to the transposed location
while the fine-grained transpose kernel does.
The coarse-grained transpose has almost the
performance of the coalesced and bank
conflict free transposes, while the fine-
grained transpose has a performance similar
to the shared memory copy. A performance
bottleneck occurs when writing data in global

memory to the transposed location. A
decrease in performance can occur when
accessing global memory through partition
camping just like in the case of shared
memory where performance degrades
through bank conflicts. For a general
understanding of the partition camping issue,
see [14].
g) Diagonal block reordering. Results are
presented in Table 9 and Figure 10.

Table 9. Bandwidth in the diagonal block reordering test.

 Loop over kernel (GB/s) Loop in kernel (GB/s)

Test number GTX280 GTX480 GTX280 GTX480

1 26.37 78.7 101.56 256.11

2 28.1 78.7 101.21 256.21

3 26.88 78.6 101.64 255.54

4 26.26 78.66 101.51 255.89

5 26.32 78.73 101.42 256.98

6 25.83 78.78 101.34 255.33

7 26.35 71.69 101.45 256.03

8 26.38 71.76 101.31 254.85

9 26.38 78.72 101.44 256.83

10 26.38 71.51 101.44 254.45

Fig. 10. Diagonal block reordering test – graphical results.

Diagonal reordering can solve the partition
camping problem mentioned before. In the
diagonal case, when reading from the input

matrix and writing to the transposed one,
pairs of tiles cycle through the partitions
[13]. The read and write operations, when

Informatica Economică vol. 14, no. 4/2010 45

looping in the kernel, represent only a few
percent of the shared memory copy. The
performance degrades slightly if looping
takes place over the kernel. The diagonal
transpose is more efficient than the other

transpose types analyzed in this paper when
it comes about bandwidth throughput. The
performance increase happens despite the
performance degradation mentioned above.

Table 10. Average bandwidth recorded in all the tests.

Test number Test name
Loop over kernel (GB/s) Loop in kernel (GB/s)

GTX280 GTX480 GTX280 GTX480

1 Simple copy 79.375 115.255 105.984 354.187

2 Naïve transpose 2.424 58.589 2.476 92.388

3 Coalesced transpose 17.811 90.779 19.363 167.627

4 Shared memory copy 37.634 94.2 87.89 193.107

5
Shared memory bank

conflicts
18.378 100.617 19.372 240.256

6 Fine-grained transpose 62.645 103.65 91.14 240.235

7 Coarse-grained transpose 18.508 101.244 19.369 238.154

8 Diagonal transpose 26.525 76.585 101.432 255.822

Fig. 11. Average bandwidth recorded in all the tests – graphical results.

46 Informatica Economică vol. 14, no. 4/2010

The performance improvement is more
notable for the GT200 architecture.
Finally, we present below a synthetic
analysis, in order to give an overview of the
experimental results obtained when testing
the performance of NVIDIA’s latest two
architectures: GT200 and Fermi. Average
bandwidth recorded in all the tests are
presented in Table 10 and Figure 11, on both
architectures, using the Loop over kernel and
Loop in kernel methods.

6 Conclusions and Future Work
In this paper, we have analyzed several
aspects regarding the improvement of
performance for applications written in
CUDA. We addressed an issue of paramount
importance when programming an
application in CUDA: GPU memory
management through transpose kernels that
are progressively optimized. We have also
benchmarked and evaluated the performance
for progressively optimizing a transposing
matrix application in CUDA.
One particular interest was to research how
well the optimization techniques, applied to
software application written in CUDA, scale
to the latest generation of general-purpose
graphic processors units (GPGPU), like the
Fermi architecture implemented in the
GTX480 and the previous architecture
implemented in GTX280.
Lately, there has been a lot of interest in the
literature for this type of optimization
analysis, but none of the works so far (to our
best knowledge) tried to validate if the
optimizations can apply to a GPU from the
latest Fermi architecture and how well does
the Fermi architecture scale to these software
performance improving techniques. In this
context, we performed the following tests on
both architectures: simple copy, naïve
transpose, coalesced transpose, shared
memory copy, shared memory bank
conflicts, fine-grained transpose, coarse-
grained transpose and diagonal transpose.
Future work involves a more thorough
optimization using a larger selection of
CUDA applications and an exhaustive

benchmarking process. We intend to analyze
how the new CUDA architecture can
optimize the data extraction process.

References
[1] M. M. Heck, High performance

modelling of derivative prices using the
peakstream platform, PeakStream
Financial Services Technical Note,
September 2006, pp. 73-81.

[2] N. K. Govindaraju, B. Lloyd, W. Wang,
M. Lin, D. Manocha, “Fast Computation
of Database Operations using Graphics
Processors”, Proceedings of ACM
SIGMOD, 2004, pp. 215-226.

[3] S. Ryoo, C. I. Rodrigues, S. S.
Baghsorkhi, S. S. Stone, D. B. Kirk, W.
W. Hwu, Optimization principles and
application performance evaluation of a
multithreaded GPU using CUDA, in
Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and practice of
parallel programming, 2008, pp. 73-82.

[4] N. Satish, M. Harris, M. Garland -
Designing Efficient Sorting Algorithms
for Manycore GPUs, in Proc. 23rd IEEE
International Parallel and Distributed
Processing Symposium, 2009, pp. 1-10.

[5] J. Archuleta, Y. Cao, W. Feng, T.
Scogland - Multi-Dimensional
Characterization of Temporal Data
Mining on Graphics Processors,
Technical Report TR-09-01, Computer
Science, Virginia Tech, 2009.

[6] N. Nakasato, A Fast GEMM
Implementation on a Cypress GPU, 1st
International Workshop on Performance
Modeling, Benchmarking and
Simulation of High Performance
Computing Systems, November 2010.

[7] NVIDIA CUDA Compute Unified
Device Architecture - Programming
Guide, Version 3.0, NVIDIA Whitepaper
2010, pp. 11-161.

[8] M. J. Atallah, Algorithms and Theory of
Computation Handbook, CRC Press
LLC, 1998.

[9] P. Bakkum, K. Skadron - Accelerating
SQL Database Operations on a GPU

Informatica Economică vol. 14, no. 4/2010 47

with CUDA, in Proc. of the 3rd
Workshop on General-Purpose
Computation on Graphics Processing
Units, Vol. 425, 2010, pg. 94-103.

[10] J. Nickolls, GPU Parallel Computing
Architecture and CUDA Programming
Model, IEEE Hot Chips 19 Symposium,
2007, pp. 1-12.

[11] C. Martel, R. Subramonian, A. Park -
Asynchronous PRAMs are (almost) as
good as synchronous PRAMs, in
Proceedings of the 31st Annual
Symposium on Foundations of Computer
Science, , vol.2, 2006, pp. 590-599.

[12] S. Ryoo, C. I. Rodrigues, S. S. Stone, S.
S. Baghsorkhi, S.-Z. Ueng and W. W.
Hwu. Program optimization study on a
128-core GPU, in The First Workshop
on General Purpose Processing on
Graphics Processing Units, October
2007, pp. 30-39.

[13] G. Ruetsch, Paulius Micikevicius,
Optimizing Matrix Transpose in CUDA,
NVIDIA Whitepaper, 2010, pp. 3-23.

[14] D. B. Kirk, W. W. Hwu, Programming
Massively Parallel Processors: A
Hands-on Approach (Paperback),
Morgan Kaufmann Publishers, 2010.

Alexandru PIRJAN has graduated the Faculty of Computer Science for
Business Management in 2005. He holds a MA Degree in Computer Science
for Business from 2007. He joined the staff of the Romanian-American
University as a teaching assistant in 2005 and a Lecturer Assistant in 2008.
He is a PhD candidate since 2009 at the Doctoral School from the Bucharest
Academy of Economic Studies. He is currently a member of the Department
of Informatics, Statistics and Mathematics from the Romanian-American

University. He is the author of more than 15 journal articles and a member in 4 national
scientific research projects. His work focuses on database applications, artificial intelligence
and quality of software applications.

